OH! Auth

Implementation pitfalls
& the auth providers
who have fell in it

@samitanwerl samit.anwer@gmail.com

. M

C:\>whoami =~

Samit Anwer
Product Security Team @Citrix
Web/Mobile App Security Enthusiast

Spoken @:
e SecurityFest (Gothenburg, Sweden) 2019,
 DEFCON China (Beijing) 2018,
* BlackHat Asia (Singapore) 2018,
* AppSec USA (Orlando, USA) 2017,
e CodeBlue (Tokyo, Japan) 2017

Agenda

* OAuth —What and Why?

e Access & Identity tokens

* OAuth Grant Types

e OAuth flow for Native (Mobile) Apps

e Attacks & Mitigations —
1. Authorization code interception attack
CSRF
Client open redirects
Phishing using user’s trust in AS

vk wnbn

Mix-up attack

* Q/A

Disclaimer

* |deas presented are personal

e Some content borrowed from

e Brian David Campbell’s slides on “OAuth 2.0 and
Mobile Devices”,

* AuthO & the RFC documents

* | am a Marvel fan! Expect some references to
‘Avengers: Infinity War’

€ 5 C @ linkedincom LinkedIn wants to fetch your contacts from Gmail.

in

Secure Azure Environments - Gain Complete Visibility Across Your Native Azure Services.

Write an article on Lin

A &3 = =

Home My Network Jobs Messaging N

Samit Anwer
) Sort by: Top

LinkedIn asks your Gmail password
g

S

Recent
india

&b Information Secu rity Co

& Android De er Group

& Cloud Computing, S

WAEL
problems do

you observe
with this
approach?

Knowledge of your Gmail password allows
LinkedIn to do everything

Why OAuth?

Knowledge of your Gmail
password allows LinkedIn to do
everything

Access can’t be revoked from
LinkedIn without revoking access
from all other 3™ parties

Google will be required to
support password based
authentication

Actors

Y

"</>

® O G

Resource Owner: entity that can grant access to a protected resource,
e.g. End-User

Client/Application/Relying Party (RP): application requesting access
to a protected resource on behalf of the Resource Owner,

e.g. LinkedlIn

Resource Server: the server hosting the protected resources,

e.g. Gmail

Authorization Server: the server that authenticates the Resource
Owner & issues Access Tokens after getting proper authorization,

e.g. Google

User Agent: the agent used by the Resource Owner to interact with
the application, e.g. browser

Before we
begin....

Client Registration

* You must register the client/application/RP with the auth/identity
service

Client AS

App name, website, logo & a redirect URI 1. Generates

Client ID & Client Secret
(/) I ﬁ 2. Stores
Client ID & Client Secret Client ID, redirect URI
mapping

e Client ID is public info and is used to build login URLs
* Client Secret must be kept confidential

* If a deployed app cannot keep the secret confidential (like SPA,
native app) then the secret is not used

Please sign in.

OAuth in a nutshell ar—

Sign in with Facebook

Google (AS) Stack Exchange or
(Client/Application/RP) Emai

e.g. john@company.com

5. Access Token to client’s redirect URI

</token 4. Request Token

/authorize

3. Authorization Code 6. Request resource with

Google 2 User. to client’s redirect URI Token
00g'e Authorizes
= Stack Exchange -
l 1. Initiate RS
This app would like to: 1. Initiate éuthorltzatlon
Authorization eques
View basic information about your account b -

request

Stack Exchange and Googie wil use this information in accordance with
their respectve tarms of service and privacy polcies

Ganes! m

Open |ID Connect

Google (AS) Stack Exchange

5. Access & ID Token to client’s redirect URI

/token 4. Request Token

/authorize

2. User
Authorizes

Google 3. Authorization Code

to client’s redirect URI

Stack Exchange -
1. Initiate

{ll

1. Initia.te . Authorization
This app would like to: Authorization Request
request

‘3 View basic information about your account i)

Stack Exchange and Googie wil use thie information In accordance with
their respectve tarms of service and privacy polcies

c‘n“‘ m

(Client/Application/RP)

Please sign in.
8+ Sign in with Google

Sign in with Facebook

or

e.g. john@company.com

A(d:ee$ H:v-d-km@ N A sadnspia pletakess /i@ mayload

: - .&g%tNDIkN|OSZJJILTQ4ZThIYWIyODE4MCIsInNJb3
RHey pix Iy eapra&Na-k.a. bearer token) BlljpbIm9wZW5pZCIdLCIjbGlIbnRfaWQiOUvYXV0aF9za

G93Y2F22V9hdXRab3IPemEOaWIUKINVZGUILCR WAL

‘QilvYXV0ak9zaGa3Y2F2ZY IhdXRob3IpemF0aWIuX2Nv

i Convers Sthoriaation o arus 5 User ZGUILCIhenAIOIVYQaFIZaGa3Y2FaZYShdXRab3Ipern
EREVY YRR 8&r's name, email, etc. -Fpa‘vvgqxguvZGU:]L@}nﬁrﬂEqdf%QeXB]JJo|YXVOaG9anp

: : : 'Ik 0 JJIILTQ_,__ _ThIYWIyODE4MCIsIm9yadeb|I6IthY
1tis eBRstimed By the Flisgtrer hdisp'ay UM W COEAMC i
mlzc2FAGYzdG5vemailCIhdXRoX3RpbWUIOJEONk4N

DY3NjlstndldIoza: iZTUPOTFKYylsimIhdCIEMTQ20T

ONjg3NiwiZXhwljoxNDY50DkwMDZS)dfQ, 1AXtzNGAW

XLA7i7TqeZOYfMbB4CT8pMngBihmvg8woY.eylqdGkiOi

Yz) TIONmMQzYWZhNDIwZDgyMTg5YTk2Y

MIslnNSIalm}hcmlchElLCJlbWprCJajmlhcmlzczlﬁAcpIG

VzdC5vemeil CJhdXRoX3RpbW UiOjEONjk4NDY3N;lsinild

'192aWciOiJiZTUOOTFkYylsImlhdCI6MTQ20TgONjg3Niwi
ZthJ.JchDYSODkwMDc2LCJpc3M|O|JodHRWO|8vbG9j
YWx0b3NOhowcase authorization_code”

]

OAuth Grants

Types

Authorization
Code Grant

Resource
Owner
Password
Credential
Grant

Implicit Grant

Client
Credentials
Grant

Authorization Server

Supervises
access to

Resource Owner Client/Applicatior /Relying Party

The Real Actors

1. Authorization Code Grant

Send Token I

Access protected resource (with token)
Send resource

Resource) . oAt
Client / Application / RP Authorization ‘ Resource
Owner Server , Server
| | | |
: I Access Resource ! :
I I n t o
I ke Unauthorized :
I Give me approval I I
¢ | l
: Authenticate & Gran:t Authorization : :
»1 /authorize
: Send Authorization Code :
| |
: Exchange code with client :
| credentials for token ,| /token
|
|
|
|
|

|
¢
!
|
|
|
|
|
i
!
~

o)1 1 S

Authorization
Code Grant

Authorization

Request

(ACG) https://authorization-server.com/auth?response type=code&
client id=CLIENT ID&redirect uri=REDIRECT URI&scope=photos&state=1234zyx

https://example-app.com

Response
https://example-app.com/cb?code=AUTH_CODE_HERE&state=1234zyx
Token Exchange
Request
POST https://apl.authorization-server.com/token
grant type=authorization code&
Advantages of ACG code=AUTH_CODE_HERE&

: - redirect uri=https://example-app.com&
Provides the ability to client id=CLIENT ID&

Response

Transmission of access token to {

client without passing it through "access token":"RsTS0jbzRn430zgMLgv3Ia”,

Browser fexpires in": 3600
¥

Ref: https://aaronparecki.com/oauth-2-simplified/

https://aaronparecki.com/oauth-2-simplified/

2. Implicit Grant

B R . .
esource Client/ Application/ RP Authorization ' Resource
Owner Server ‘ Server

I I I I
' I Access Resource ! :

| E - ; »t

| . ke Unauthorized : I

¢ Give me approval : | |

I I I I

| Authenticate & Grant Authorization , . I

| : >I /authorize :

: :‘chend Authorization Code | :

I

| | hange code with client | |

I I : I I

: : credentials for toke Jtoken :

I I I I

| | Send Tok | '

: :4 cnc _oxen :/authorize :

: ' Access protected resource (with token) "'

L Send resource ;

02 @' S :

Authorization
Request

Disadvantages of Implicit Grant

https://authorization-server.com/auth?response type=token&
client id=CLIENT ID&redirect uri=REDIRECT URI&scope=photos&state=1234zyx
No client authentication
Access token can end up in

Response
Browser history

https://example-app.com/cb?access_token=_HERE&state=1234zyx

Access token leakage through
Referrer header

Ref: https://aaronparecki.com/oauth-2-simplified/

https://aaronparecki.com/oauth-2-simplified/

1. Client initiates authorization request

2. End-user authenticates & approves the requested access

OAuth for
Mobile clients/

3. Server returns control to the app & includes an auth. code

Native apps
(RFC-8252)

4. The auth. code is traded for access token & refresh token

5. Protected APIs invoked using the access token

Cloud!
~ Google
1. Request rﬂi 8
Authorization | Token Authorization

d Endpoint Endpoint

 When user needs to access
some protected resource,
client opens a browser and

sends user to the :

authorization endpoint
Device

Google

2. Authenticate and
Approve

Token Authorization
Endpoint Endpoint

e The AS authenticates the
user

Device

Cloud!

~ Google
Token Authorization
A pprove Endpoint Endpoint
* User approves the request 2 Google
~ A4

Device Stack Exchange -

A
= |
This app would like to:

View basic information about your account

Stack Exchange and Googie wil use this information in accordance with
their respective tarms of service and privacy polcies

Cloud!
_ ~ Google
‘ Token Authorization

3. Handle Callback d Endpoint | Endpoint

e Server returns control to the

app via HTTP redirection
and includes an
authorization code

Device

Custom URI
Scheme

HTTP/1.1 302 Found

Location: x-com.mycorp.myapp://oauth.callback?code=SpIxIOBeZQQYbYS6WxSbIA

Google

Token Authorization
Endpoint Endpoint

3. Handle Callback

* Registering a custom URI

scheme g

In AndroidManifest.xmil file:

<activity android:name="_MyAppCallback” ... >

<intent-filter>

<action android:name="android.intent.action.VIEW"/>

<category android:name="android.intent.category. DEFAULT"/>
<category android:name="android.intent.category. BROWSABLE"/>
<data android:scheme="x-com.mycorp.myapp" />

</intent-filter>

</activity>

String authzCode = getintent().getData().getQueryParameter("code");

4. Trade code for
token

* Token Endpoint Request

e Token Endpoint Response

Cloud!

‘ Token Authorization
d Endpoint Endpoint

Device

POST /as/token.oauthZ HTTP/1l.1

Host: as.example.com

Content-Type: application/x-www-form-urlencoded;charset=U

client id=myappé&grant type=authorization code&code=Splxl0BeZQQYbYS6WxzSbIA

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragma: no-cache

"token type":"Bearer",

"expires in":3600,

"access token":"PeRTSDIRQrbiuoaHVPxV41MzW1gS”,

"refresh token":"uyAVrtyLZ2qPzI8rQ5UUTckCdGadsz8XE8S58ecnt8”

Token Authorization
Endpoint Endpoint

5. Using an access
token

Device 3

* Once an access token is
obtained, it can be used to
authorize calls to the
protected resources at the POST /api/update-status HTTP/1.1
RS by including itin HTTP Host: rs.example.com

Authorization header Authorization: Bearer PeRTSD9RQrbiucaHVPxV41MzW1gS

Content-Type: application/z-www-form-urlencoded;charset=UTF-8

status=Almost%20done.

DefaultHttpClient httpClient = new DefaultHttpClient():
HttpPost post = new HttpPost ("https://rs.example.com/api/update-status”):;

post.setHeader ("Authorization"”, "Bearer " + accessToken):

Agenda — What have we covered?

* OAuth —What and Why? v

e Access & Identity tokens v

* OAuth Grant Types v

* OAuth with Native (Mobile) Apps v

e Attacks & Mitigations —
1. Authorization code interception attack
CSRF
Client open redirects
Phishing using user’s trust in AS

vk wnbn

Mix-up attack

* Q/A

Attacks & Mitigations

1. Authorization code
intercept attack on mobile
clients/native apps

Authorization code intercept attack

Preconditions

|Legitimate |
|OAuth 2.8 App]

* "client_secret" is not provisioned

e Attacker manages to install on , et
. Authz
device ; Server

* Attacker manages to register the same
used by legitimate app Operating

g Sv
o] -
S

Browser

Img. Ref.: RFC-7636

Mitigation
1. Handle redirections carefully

e Avoid Custom URI Scheme Redirection

There is no naming authority

com.example.app:/oauth2redirect/example-provider

e Use Claimed HTTPs Scheme URI Redirection

The identity of the destination app is
guaranteed by the OS to the authorization
server

https://app.example.com/oauth2redirect/example-provider

Mitigation (continued)

2. Use Proof Key for Code Exchange (PKCE) with apps that use custom URI
scheme

Code Challenge <= t(code_verifier)
(cC)

Generate
code_verifier

Token where:
Endpoint t(code_verifier) = code challenge
t_m = code challenge method

|
|
|
|
|
| Client
|
|
|
|
|

RFC-7636

Demo: Faulty PKCE implementation
on Microsoft IdP

3 . . ,
R Demo: Faulty PKCE implementation on Microsoft IdP

|Targei iPrnxy Spider | Scanner | Intruder | Fepaatar l Sequancar l Decodar l Comparer [Extender [Praject options] Usar options l | coz |
. Intercept | HTTP history] WebSockets history l Options]

Fitter: Hiding out of scope tems:; hiding CS5, image and general banary content

4 Host Method LURL

659 https:/discovery. mdm_ zenprise com GET fdiscoveryfapifj?host=asdemo.xs. citrix comBport=443

661 https:/fasdemo xs.citrix.com GET fzdmicadipublicigetsenerinfo

662 https-/fasdemo xs_citrix.com GET fzdmicadipublic/getsenerinfo

664 https:Mogin.windows net GET 12f1e56b3-2a8b-4c55-3dbT-6aa7 116883/ vauth2/authorize Predirect_uri=com.citix securehub%IA%2F%2Foawth %2Fredirect_uri&client_id=ab2
665 https:/Nogin.microsoftonline.com GET 2f1e56b3-2a8b-4c55-9dbT-6aaT 11688 3/vauth2/autharize Predirect_uri=com.citnixsecurehub A% 2F %2F oauth % 2Fredirect_uri&client_id=ab2
672 https.ogin.micrasoftonline.com POST [2f1e56b3-2adb-4c55-3dbT-6aa7 11bfE83/login

673 https:Mogin.windows net POST {2f1e56b3-2alb-4c55-3dbT-6aaT 11bifB83/vauth2token

6. Initiating the Authorization Request from a Native App

Native apps needing user authorization create an authorization
request URI with the authorization code grant type per Section 4.1 of
OAuth 2.0 [REC6749], using a redirect URI capable of being received
by the native app.

The function of the redirect URI for a native app authorization
request is similar to that of a web-based authorization request.
Rather than returning the authorization response to the OAuth
client's server, the redirect URI used by a native app returns the
response to the app. Several options for a redirect URI that will
RFC_8252 return the authorization response to the native app in different
platforms are documented in Section 7. Any redirect URI that allows

Says PKCE the app to receive the URI and inspect its parameters is viable.
MUST be Public native app clients MUST implement the Proof Key for Code
Exchange (PKCE [REC7636]) extension to OAuth, and authorization

Supported by servers MUST support PKCE for such clients, for the reasons detailed

in Section 8.1.

client and AS

After constructing the authorization request URI, the app uses
platform-specific APIs to open the URI in an external user-agent.
Typically, the external user-agent used is the default browser, that
is, the application configured for handling "http" and "https" scheme
URIs on the system; however, different browser selection criteria and
other categories of external user-agents MAY be used.

Why you no PKCE?

AS

2. CSRF

» Attacker attempts to inject request to
the redirect URI of the legitimate
client

4. POST https://auth_srvr/token
{auth_code= attacker auth_code

5. Attacker’s access token

 causing the client to access resources

under the attacker's control Forged Authorization response

Malicious Website

3. Redirect to
o . Client (,) — https://client_redirect_url/as?code=attacker_auth code
I\/I Itlg@et[\f@lm(s it is accessing end- ‘,

. e 2. Visits https://attacker.com
user resources but in reality it is

Authorization Request

* One-time (RECESRPEFEACKQICHEASOUrCES o () ~
Validate if the CSRF token in the "state" parameter _ w]
of authorization request matches the one returned in 1. Publishes malicious
the authorization response 6. Fetch attacker’s resource website a

https://authorization-server.com/auth?response type=code&
client id=CLIENT ID&redirect uri=REDIRECT URI&scope=photos&state=1234zyx

P e

Response https://example-app.com/cb?code=AUTH_CODE_HERE&state=1234zyx

RS

3. Client Open Redirects

https://server.somesite.example

Access token leak

https://client.somesite.example/cb?redirect to=https://client.evil.example/cb

-‘W?ﬁ'ﬁﬁbﬁ fbihe [Rdjsgctor Does “redirect_firi” match with pattern? YES !

(/) Pattern:htfps://client.somesite.gifample/cb?*
4. Issues\Q 303 redirect
* Client uses implieit grant Match

HTTP/1.1 3
Location: h s://client.somesite.example/ch?

faccess token=2Yot rlzCsic &. - -
Sh—somesite.ex mp YA Y ad

5. Client redirector issues an

HTTP 303 Location header redirect
11
HTTP/1.1 303 See Other

Location: https://client.evil.example/cb

H o '
rect. Abgve endpoint supportsa ‘redirect to
GET fauthorize?response_type=token&5tate=9ad6?f13
&client id=séBhdRkgt3
gredirect uri=https%3A%2F%2Fclient.somesite.example
%2Fch%*3Fredirect to%253Dhttps%253A%252F
%EEEFClient.evilfexample%2§EFcb HTTPE/1.1

Host: server.someslte.example .
P https://www.evil.example

https://client.evil.exampl w YotnFZFEjrlz...

paran1eter
https://

ent. ‘O

(‘\ 2. Visits https://www.evil.example ————)
- ",

a o 1. Publishes malicious

website

Mitigation
* Clients MUST not expose open redirectors

Thanos (“Client”) left open redirects!
——— o

4. Phishing using user’s
trust in Auth Server

Phishing using user’s trust in AS

* The attacker:
* Performs a client registration with redirect URIas https://attacker.com
* Prepares a forged URI like

https://AUTHORIZATION SERVER/authorizefresponse type=code&client i
d=s6BhdRkqt3&state=xyz&redirect uri=httpsh3AX2F%2Fattackerf2Ecomés

cope=INVALID SCOPE

* Have the victim click the forged URI
* The victim is redirected to https://attacker.com

Mitigation

* AS needs to take a call whether to redirect or
not

e AS MAY inform user that it is about to redirect
to another site

Mix Up

* An attack applicable in scenarios where client
interacts with multiple Auth Servers (AS)

* One of the AS turns malicious

* Malicious AS tricks client to obtain auth code or
access token (generated by other AS)

Preconditions

e Client uses same redirect URI for all AS

Mix-Up attack:

Please sign in.

5. Redeem authorization code at g+ Sign in with Google

FB’s token endpoint
Sign in with Facebook

FB’s AS (malicious)
6.Redeekacodefortoken — 0 Google’s AS \ LinkedIn
7. Token

<[>

2. Redirect to 4. Authorization
Google’s auth

page

3. User 4. Authorization

Authorizes Code

8.. R.eq’uest 1. Initiate e S e 1. Initiate
victim’s Google) . Authorization

resources with Authorization Request to FB AS
token request

=

) End-user
&

<J

FB_RS

Please sign in.

5. Redeem authorization code at 84.
FB’s token endpoint

Sign in with Google

Sign in with Facebook

6. Redeemkcode for token — p Google’s AS R LinkedIn
7. Token

FB’s AS (malicious) ,—

<>

2. Redirect to
Google’s auth

page

4. Authorization
Code i

3. User
Authorizes

8. Request
victim’s Google
resources with
token

1. Initiate
Authorization
Request to FB AS

1. Initiate
Authorization
request

Gancel m

(End-user
W

Mitigation

5. Redeem authorization code at
FB's token endpoint

A

Redeem code for token
. R e ’I. GDDEIE"S AS https://client.com/

google redirect uri

—>

2. Redirect to 4. Authorization
Google's auth Code

page

3. User 4. Authorization
Authorizes Code

5. Request
ictim’s Google
esources with
oken

1. Initiate
Authorization Authorization

request Request to FB AS

Summary

OAuth is used for delegating resource access to a 3" party app

& ldentity tokens are used to prove & authentication respectively
e Use for & ACG with PKCE for mobile clients
e OAuth for Native (Mobile) Apps
* Discussed some attacks: fﬁf’ *‘
1. Authorization code interception attack
CSRF

Client open redirects
Phishing using user’s trust in AS ,
Mix-up attack

2 gm 9L

References — Things we do for security

Diagrams of All The OpenID Connect Flows

OAuth 2 Simplified

AuthO docs

OAuth 2.0 and Mobile Devices: Is that a token in your
phone in your pocket or are you just glad to see me?

OpenlID Connect Core 1.0 incorporating errata set 1

IETF docs

JWT,

JSON Web Key,

JSON Web Signature (JWS),

JSON Web Encryption (JWE),

JSON Web Algorithms (JWA),

The OAuth 2.0 Authorization Framework
Proof Key for Code Exchange by Oauth, Public
Clients,

OAuth 2.0 for Native Apps,

Threat Model and Security Considerations,

OAuth 2.0 Security Best Current Practice

Oauth 2.0 Token Binding

OAuth 2.0 Form Post Response Mode

https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660
https://aaronparecki.com/oauth-2-simplified
https://auth0.com/
http://www.slideshare.net/briandavidcampbell/is-that-a-token-in-your-phone-in-your-pocket-or-are-you-just-glad-to-see-me-oauth-20-and-mobile-devices
https://openid.net/specs/
https://tools.ietf.org/html
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-12
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-08
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

References — Things we do for security

Diagrams of All The OpenID Connect Flows

OAuth 2 Simplified

AuthO docs

OAuth 2.0 and Mobile Devices: Is that a token in your
phone in your pocket or are you just glad to see me?

OpenlID Connect Core 1.0 incorporating errata set 1

IETF docs

JWT,

JSON Web Key,

JSON Web Signature (JWS),

JSON Web Encryption (JWE),

JSON Web Algorithms (JWA),

The OAuth 2.0 Authorization Framework
Proof Key for Code Exchange by Oauth, Public
Clients,

OAuth 2.0 for Native Apps,

Threat Model and Security Considerations,

OAuth 2.0 Security Best Current Practice

Oauth 2.0 Token Binding

OAuth 2.0 Form Post Response Mode

https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660
https://aaronparecki.com/oauth-2-simplified
https://auth0.com/
http://www.slideshare.net/briandavidcampbell/is-that-a-token-in-your-phone-in-your-pocket-or-are-you-just-glad-to-see-me-oauth-20-and-mobile-devices
https://openid.net/specs/
https://tools.ietf.org/html
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-12
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-08
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

Get in touch!

e e-mail: samit.anwer@gmail.com, |
* Twitter: @samitanwerl,

* LinkedIn: https://www.linkedin.com/in/samit-anwer-ba47a85b/ in

,,,

Questions? o Grazie!

SCOpeS OAuth in a nutshell

* Used by client during authorization request to .
get access to a set of user attributes which are
called claims, e.g. email, profile, etc.

£:d 1. Iniviate
Authorization

request

* The authorization decision emerges from
combining the scope Mail.Read , the user
identifier & the entity requested

Authorization Decision

sush E:.!:
acn; sl Fesd

sl Wad AP

E scope mail
>

mail API

Ref: https://auth0.com/blog/on-the-nature-of-oauth2-scopes

https://auth0.com/blog/on-the-nature-of-oauth2-scopes/

b) Auth code leak

* Client website links Google Drive so that it
can display user’s Google Drive resources

e Client may have a URL like

https://client.com/googledrive/Login.aspx?
redirect url=https%3A%2F%2Fattacker.com

e This URL redirects user to Google’s auth.
page & after user signs-in redirects the
authorization code to attacker.com

X @ https://attacker.com/?code

https://accounts.googie.com/signin/oauth/consent?authuser=0&part=AJi8hAObs-cOcvwaS 2] Q

Client.com wants to access your Google Account

Thiswillallow Client.com to:

L See, edit, create and delete all of your Google Drive files
View and manage your Google Slides presentations
View and manage your Google Docs documents
See, edit, create and delete your spreadsheets in Google Drive
Send email on your behalf
Manage your basic email settings
View and manage your forms in Google Drive
Connect to an external service
Send email as you

Allow this application to run when you are not present

© © © © © © © © © © O

Display and run third-party web content in prompts and sidebars
inside Google applications

Ben efItS Of The auth code provides the ability to
authorization authenticate the client

code

Transmission of the access token directly
to the client without passing it through
the resource owner's user-agent

JWT (JSON A&
Web Tokens)

" "HS256",
"1 "legacy-token-key",
o tJWT”

"jti": "2c3dcof53e5246d3afad20ds82189a96¢”,
"sub": "9ac2d784-2540-49d6-9f2e-48e8eab28180",
"scope": [

"openid”
1.
"client_id": "oauth_showcase_authorization_code",
"cid": "ocauth_showcase_authorization_code”
"azp": "oauth_showcase_authorization_code",
"grant_type": "authorization_code"
"user_id": "9ac2d704-2540-49d6-9f2e-48eB8eab28180",
"origin”: "uaa",
"user_name": "marissa”
"email": "marissa@test.org”
"auth_time": 1469846762,

"rev_sig": "be5491dc",
"iat": 1469846876,
“exp": 5
"iss"!
"zid": "uaa",
“aud": [

"openid”,

"oauth_showcase_authorization_code"

HMACSHA2 56 (
baseb4UrlEncode(header) + "." +
base64UrlEncode(payload)
your-256-bit-secret

) O secret base64 encoded

- JWTs are self-contained

- They can be signed

A JWT’s format is “1. Header . 2. Payload . 3. Signature”

1. Header contains the type of token & the hash algorithm used
on the contents of the token

2. The payload contains identity claims about a user.

Claims are statements (name or email address) about an entity
(typically, the user) and metadata

3. The signature is used by the recipient of a JWT to validate the
integrity

RFC-7636, RFC-7515, RFC-7516

