
OH! Auth
Implementation pitfalls
& the auth providers
who have fell in it

H!

@samitanwer1 samit.anwer@gmail.com

C:\>whoami

• Samit Anwer

• Product Security Team @Citrix

• Web/Mobile App Security Enthusiast

• Spoken @:

• SecurityFest (Gothenburg, Sweden) 2019,

• DEFCON China (Beijing) 2018,

• BlackHat Asia (Singapore) 2018,

• AppSec USA (Orlando, USA) 2017,

• CodeBlue (Tokyo, Japan) 2017

Agenda

• OAuth – What and Why?

• Access & Identity tokens

• OAuth Grant Types

• OAuth flow for Native (Mobile) Apps

• Attacks & Mitigations –

1. Authorization code interception attack

2. CSRF

3. Client open redirects

4. Phishing using user’s trust in AS

5. Mix-up attack

• Q/A

Disclaimer
• Ideas presented are personal

• Some content borrowed from

• Brian David Campbell’s slides on “OAuth 2.0 and

Mobile Devices”,

• Auth0 &

• the RFC documents

• Don’t kill me for my humour!

• I am a Marvel fan! Expect some references to

‘Avengers: Infinity War’

Disclaimer

• Ideas presented are personal

• Some content borrowed from

• Brian David Campbell’s slides on “OAuth 2.0 and

Mobile Devices”,

• Auth0 & the RFC documents

• I am a Marvel fan! Expect some references to

‘Avengers: Infinity War’

Why OAuth?

LinkedIn wants to fetch your contacts from Gmail.

Why OAuth?

LinkedIn asks your Gmail password

What
problems do
you observe
with this
approach?

Knowledge of your Gmail password allows
LinkedIn to do everything

Access can’t be revoked from LinkedIn
without revoking access from all other 3rd

parties

LinkedIn would be required to store your
Gmail credentials

Google will be required to support
password based authentication

Enter OAuthWhy OAuth?

Protocol for delegating authorization supported
by web, desktop and native apps

1. Scope of access granted to a 3rd party can be
constrained

2. Access granted to a specific 3rd party is
revocable

3. Avoids sharing of creds with 3rd party

4. Foundation for an authentication protocol

Knowledge of your Gmail
password allows LinkedIn to do
everything

Access can’t be revoked from
LinkedIn without revoking access
from all other 3rd parties

LinkedIn would be required to
store your Gmail credentials

Google will be required to
support password based
authentication

Actors

• Resource Owner: entity that can grant access to a protected resource,

e.g. End-User

• Client/Application/Relying Party (RP): application requesting access

to a protected resource on behalf of the Resource Owner,

e.g. LinkedIn

• Resource Server: the server hosting the protected resources,

e.g. Gmail

• Authorization Server: the server that authenticates the Resource

Owner & issues Access Tokens after getting proper authorization,

e.g. Google

• User Agent: the agent used by the Resource Owner to interact with

the application, e.g. browser

Before we
begin….

• You must register the client/application/RP with the auth/identity
service

• Client ID is public info and is used to build login URLs

• Client Secret must be kept confidential

• If a deployed app cannot keep the secret confidential (like SPA,
native app) then the secret is not used

Client Registration

App name, website, logo & a redirect URI

Client ID & Client Secret

Client AS
1. Generates
Client ID & Client Secret
2. Stores
Client ID, redirect URI
mapping

OAuth in a nutshell

1. Initiate
Authorization
Request

3. Authorization Code
to client’s redirect URI2. User

Authorizes

4. Request Token

5. Access Token to client’s redirect URI

6. Request resource with
Token

Stack Exchange
(Client/Application/RP)

Google (AS)

RS

/token

/authorize

End-user

1. Initiate
Authorization
request

Open ID Connect

1. Initiate
Authorization
request

1. Initiate
Authorization
Request

3. Authorization Code
to client’s redirect URI

2. User
Authorizes

4. Request Token

5. Access & ID Token to client’s redirect URI

Stack Exchange
(Client/Application/RP)

Google (AS)

/token

/authorize

End-user

Access Token

Is typically opaque (a.k.a. bearer token)

It conveys authorization

It is consumed by the resource server

A sample ID token (JWT) payload

The ID Token is a JWT

It conveys authentication status & user
identity info. like the user's name, email, etc.

It is consumed by the client for UI display

Identity Token
eyJhbGciOiJIUzI1NiIsImtpZCI6ImxlZ2FjeS10b2tlbi1rZXki
LCJ0eXAiOiJKV1QifQ.eyJqdGkiOiIyYzNkYzZmNTNlNTI0N
mQzYWZhNDIwZDgyMTg5YTk2YyIsInN1YiI6IjlhYzJkNzA
0LTI1NDAtNDlkNi05ZjJlLTQ4ZThlYWIyODE4MCIsInNjb3
BlIjpbIm9wZW5pZCJdLCJjbGllbnRfaWQiOiJvYXV0aF9za
G93Y2FzZV9hdXRob3JpemF0aW9uX2NvZGUiLCJjaWQi
OiJvYXV0aF9zaG93Y2FzZV9hdXRob3JpemF0aW9uX2Nv
ZGUiLCJhenAiOiJvYXV0aF9zaG93Y2FzZV9hdXRob3Jpem
F0aW9uX2NvZGUiLCJncmFudF90eXBlIjoiYXV0aG9yaXp
hdGlvbl9jb2RlIiwidXNlcl9pZCI6IjlhYzJkNzA0LTI1NDAtND
lkNi05ZjJlLTQ4ZThlYWIyODE4MCIsIm9yaWdpbiI6InVhY
SIsInVzZXJfbmFtZSI6Im1hcmlzc2EiLCJlbWFpbCI6Im1hc
mlzc2FAdGVzdC5vcmciLCJhdXRoX3RpbWUiOjE0Njk4N
DY3NjIsInJldl9zaWciOiJiZTU0OTFkYyIsImlhdCI6MTQ2OT
g0Njg3NiwiZXhwIjoxNDY5ODkwMDZSJdfQ.1AXtzNGdW
XL77i7TqeZOYfMbP4CT8pMnqBihmvg8woY.eyJqdGkiOi
IyYzNkYzZmNTNlNTI0NmQzYWZhNDIwZDgyMTg5YTk2Y
yIsInNSI6Im1hcmlzc2EiLCJlbWFpbCI6Im1hcmlzc2FAdG
VzdC5vcmciLCJhdXRoX3RpbWUiOjE0Njk4NDY3NjIsInJld
l9zaWciOiJiZTU0OTFkYyIsImlhdCI6MTQ2OTg0Njg3Niwi
ZXhwIjoxNDY5ODkwMDc2LCJpc3MiOiJodHRwOi8vbG9j
YWxob3N0

A sample access token

OAuth Grants
Types

Authorization
Code Grant

Implicit Grant

Resource
Owner

Password
Credential

Grant

Client
Credentials

Grant

The Real Actors

Resource Owner
Client/Application/Relying Party

Resource Server

Authorization Server

Has
Wants

Supervises
access to

1. Authorization Code Grant

Resource
Owner

Client / Application / RP Authorization
Server

Resource
Server

Access Resource

Give me approval

Authenticate & Grant Authorization

Send Authorization Code

Exchange code with client
credentials for token

Send Token

Access protected resource (with token)
Send resource

Unauthorized

/authorize

/token

Authorization
Code Grant

(ACG)

Authorization

Token Exchange

Ref: https://aaronparecki.com/oauth-2-simplified/

Request

Response

Request

Response

Provides the ability to
authenticate the client

Transmission of access token to
client without passing it through
Browser

Advantages of ACG

https://aaronparecki.com/oauth-2-simplified/

Send Authorization Code

Give me approval

2. Implicit Grant

Resource
Owner

Client/ Application/ RP Authorization
Server

Resource
Server

Authenticate & Grant Authorization

Exchange code with client
credentials for token

Send Token

Access protected resource (with token)
Send resource

Access Resource
Unauthorized

/authorize

/token

/authorize

Implicit Grant

Authorization

Ref: https://aaronparecki.com/oauth-2-simplified/

Request

Response

No client authentication

Access token can end up in
Browser history

Disadvantages of Implicit Grant

Access token leakage through
Referrer header

https://aaronparecki.com/oauth-2-simplified/

OAuth for
Mobile clients/
Native apps
(RFC-8252)

5. Protected APIs invoked using the access token

4. The auth. code is traded for access token & refresh token

3. Server returns control to the app & includes an auth. code

2. End-user authenticates & approves the requested access

1. Client initiates authorization request

1. Request
Authorization

• When user needs to access
some protected resource,
client opens a browser and
sends user to the
authorization endpoint

Google

Stack Exchange

2. Authenticate and
Approve

• The AS authenticates the
user

Google

Stack Exchange

Approve

• User approves the request

Stack Exchange

Google

3. Handle Callback

• Server returns control to the
app via HTTP redirection
and includes an
authorization code

Google

Stack Exchange

Custom URI
Scheme

3. Handle Callback

• Registering a custom URI
scheme

Google

Stack Exchange

4. Trade code for
token

• Token Endpoint Request

• Token Endpoint Response

5. Using an access
token

• Once an access token is
obtained, it can be used to
authorize calls to the
protected resources at the
RS by including it in HTTP
Authorization header

Agenda – What have we covered?

• OAuth – What and Why?

• Access & Identity tokens

• OAuth Grant Types

• OAuth with Native (Mobile) Apps

• Attacks & Mitigations –

1. Authorization code interception attack

2. CSRF

3. Client open redirects

4. Phishing using user’s trust in AS

5. Mix-up attack

• Q/A

1. Authorization code
intercept attack on mobile

clients/native apps

Attacks & Mitigations

Authorization code intercept attack

Preconditions

• "client_secret" is not provisioned

• Attacker manages to install malicious app on
device

• Attacker manages to register the same custom
URI scheme used by legitimate app

Img. Ref.: RFC-7636

Mitigation

• Avoid Custom URI Scheme Redirection

There is no naming authority

• Use Claimed HTTPs Scheme URI Redirection

The identity of the destination app is
guaranteed by the OS to the authorization
server

1. Handle redirections carefully

2. Use Proof Key for Code Exchange (PKCE) with apps that use custom URI
scheme

where:
t(code_verifier) = code challenge
t_m = code challenge method

RFC-7636

Malicious
Client

Generate
code_verifier

Mitigation (continued)

Code Challenge <= t(code_verifier)
(CC)

Is CC = t(code_verifier)?

Store

Demo: Faulty PKCE implementation
on Microsoft IdP

Demo: Faulty PKCE implementation on Microsoft IdP

RFC-8252
says PKCE
MUST be

supported by
client and AS

Why you no PKCE?

2. CSRF

2. CSRF
• Attacker attempts to inject request to

the redirect URI of the legitimate
client

• causing the client to access resources
under the attacker's control

Mitigation
• One-time use CSRF token by client

Validate if the CSRF token in the "state" parameter

of authorization request matches the one returned in

the authorization response

2. Visits https://attacker.com

1. Publishes malicious
website

3. Redirect to
https://client_redirect_url/as?code=attacker_auth_code

4. POST https://auth_srvr/token
{auth_code= attacker_auth_code}

6. Fetch attacker’s resource

5. Attacker’s access token

Malicious WebsiteForged Authorization response

Authorization Request

Response

Client

AS

RS

Client thinks it is accessing end-
user resources but in reality it is
accessing attacker’s resources

End-user

3. Client Open Redirects

URL decoded value of “redirect_uri” is:
https://client.somesite.example/cb?redirect_to%3

Dhttps%3A%2F%2Fclient.evil.example.%2Fcb

Assumption for client

• Client uses implicit grant

• Redirect URL pattern registered by client is -
https://client.somesite.example/cb?*

• Client exposes open redirect. Above endpoint supports a “redirect_to”
parameter
https://client.somesite.example/cb?redirect_to=example.com

2. Visits https://www.evil.example

1. Publishes malicious
website

3. Initiates Authorization Request

https://client.somesite.example

https://server.somesite.example

4. Issues a 303 redirect

https://www.evil.example

5. Client redirector issues an
HTTP 303 Location header redirect

Access token leak
Does “redirect_uri” match with pattern?
Pattern:https://client.somesite.example/cb?*

YES!

Match

/cb?redirect_to=https://client.evil.example/cb

Request arrives at the redirector

Mitigation

• Clients MUST not expose open redirectors

Thanos (“Client”) left open redirects!

4. Phishing using user’s
trust in Auth Server

Phishing using user’s trust in AS

• The attacker:

• Performs a client registration with redirect URI as https://attacker.com

• Prepares a forged URI like

• Have the victim click the forged URI

• The victim is redirected to https://attacker.com

Mitigation

• AS needs to take a call whether to redirect or
not

• AS MAY inform user that it is about to redirect
to another site

5. Mix Up

Mix Up

• An attack applicable in scenarios where client
interacts with multiple Auth Servers (AS)

• One of the AS turns malicious

• Malicious AS tricks client to obtain auth code or
access token (generated by other AS)

Preconditions

• Client uses same redirect URI for all AS

Mix-Up attack:

Assume that user wants to start the grant using FB’s AS

• After client redirects user to the authorization endpoint at FB’s AS, the attacker
immediately redirects the user to Google’s AS

• Now, the user authorizes the client to access her resources at Google’s AS. Google’s
AS issues a code and sends it (via the browser) back to the client

• The client will try to redeem the code at FB’s AS token endpoint

• The attacker therefore obtains code

Assume that client registered with
- Google’s AS
- FB’s AS (malicious)

1. Initiate
Authorization
request

1. Initiate
Authorization
Request to FB AS

4. Authorization
Code

3. User
Authorizes

8. Request
victim’s Google
resources with
token

FB’s AS (malicious)
Google’s AS LinkedIn

FB_RS G_RS

2. Redirect to
Google’s auth
page

5. Redeem authorization code at
FB’s token endpoint

End-user

LinkedIn
4. Authorization
Code

Mitigation

• Clients should

Use AS-specific redirect URIs like

https://client.com/google_redirect_uri

https://client.com/fb_redirect_uri

Store the intended AS for each auth request & compare intended AS with actual
redirect URI where auth response was received

https://client.com/

google_redirect_uri

Mitigation

Summary

• OAuth is used for delegating resource access to a 3rd party app

• Access & Identity tokens are used to prove authorization & authentication respectively

• Use ACG for web app clients & ACG with PKCE for mobile clients

• OAuth for Native (Mobile) Apps

• Discussed some attacks:

1. Authorization code interception attack

2. CSRF

3. Client open redirects

4. Phishing using user’s trust in AS

5. Mix-up attack

References – Things we do for security
• Diagrams of All The OpenID Connect Flows

https://medium.com/@darutk/diagrams-of-all-the-
openid-connect-flows-6968e3990660

• OAuth 2 Simplified https://aaronparecki.com/oauth-2-
simplified

• Auth0 docs https://auth0.com/

• OAuth 2.0 and Mobile Devices: Is that a token in your
phone in your pocket or are you just glad to see me?
http://www.slideshare.net/briandavidcampbell/is-
that-a-token-in-your-phone-in-your-pocket-or-are-you-
just-glad-to-see-me-oauth-20-and-mobile-devices

• OpenID Connect Core 1.0 incorporating errata set 1
https://openid.net/specs/

• IETF docs https://tools.ietf.org/html

• JWT, https://tools.ietf.org/html/rfc7519

• JSON Web Key, https://tools.ietf.org/html/rfc7517

• JSON Web Signature (JWS),
https://tools.ietf.org/html/rfc7515

• JSON Web Encryption (JWE),
https://tools.ietf.org/html/rfc7516

• JSON Web Algorithms (JWA),
https://tools.ietf.org/html/rfc7518

• The OAuth 2.0 Authorization Framework
https://tools.ietf.org/html/rfc6749

• Proof Key for Code Exchange by Oauth, Public
Clients, https://tools.ietf.org/html/rfc7636

• OAuth 2.0 for Native Apps,
https://tools.ietf.org/html/rfc8252

• Threat Model and Security Considerations,
https://tools.ietf.org/html/rfc6819

• OAuth 2.0 Security Best Current Practice
https://tools.ietf.org/html/draft-ietf-oauth-
security-topics-12

• Oauth 2.0 Token Binding
https://tools.ietf.org/html/draft-ietf-oauth-
token-binding-08

• OAuth 2.0 Form Post Response Mode
https://openid.net/specs/oauth-v2-form-post-
response-mode-1_0.html

https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660
https://aaronparecki.com/oauth-2-simplified
https://auth0.com/
http://www.slideshare.net/briandavidcampbell/is-that-a-token-in-your-phone-in-your-pocket-or-are-you-just-glad-to-see-me-oauth-20-and-mobile-devices
https://openid.net/specs/
https://tools.ietf.org/html
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-12
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-08
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

References – Things we do for security
• Diagrams of All The OpenID Connect Flows

https://medium.com/@darutk/diagrams-of-all-the-
openid-connect-flows-6968e3990660

• OAuth 2 Simplified https://aaronparecki.com/oauth-2-
simplified

• Auth0 docs https://auth0.com/

• OAuth 2.0 and Mobile Devices: Is that a token in your
phone in your pocket or are you just glad to see me?
http://www.slideshare.net/briandavidcampbell/is-
that-a-token-in-your-phone-in-your-pocket-or-are-you-
just-glad-to-see-me-oauth-20-and-mobile-devices

• OpenID Connect Core 1.0 incorporating errata set 1
https://openid.net/specs/

• IETF docs https://tools.ietf.org/html

• JWT, https://tools.ietf.org/html/rfc7519

• JSON Web Key, https://tools.ietf.org/html/rfc7517

• JSON Web Signature (JWS),
https://tools.ietf.org/html/rfc7515

• JSON Web Encryption (JWE),
https://tools.ietf.org/html/rfc7516

• JSON Web Algorithms (JWA),
https://tools.ietf.org/html/rfc7518

• The OAuth 2.0 Authorization Framework
https://tools.ietf.org/html/rfc6749

• Proof Key for Code Exchange by Oauth, Public
Clients, https://tools.ietf.org/html/rfc7636

• OAuth 2.0 for Native Apps,
https://tools.ietf.org/html/rfc8252

• Threat Model and Security Considerations,
https://tools.ietf.org/html/rfc6819

• OAuth 2.0 Security Best Current Practice
https://tools.ietf.org/html/draft-ietf-oauth-
security-topics-12

• Oauth 2.0 Token Binding
https://tools.ietf.org/html/draft-ietf-oauth-
token-binding-08

• OAuth 2.0 Form Post Response Mode
https://openid.net/specs/oauth-v2-form-post-
response-mode-1_0.html

https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660
https://aaronparecki.com/oauth-2-simplified
https://auth0.com/
http://www.slideshare.net/briandavidcampbell/is-that-a-token-in-your-phone-in-your-pocket-or-are-you-just-glad-to-see-me-oauth-20-and-mobile-devices
https://openid.net/specs/
https://tools.ietf.org/html
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-12
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-08
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

Get in touch!

• e-mail: samit.anwer@gmail.com,

• Twitter: @samitanwer1,

• LinkedIn: https://www.linkedin.com/in/samit-anwer-ba47a85b/

Questions? Grazie!

Scopes

• Used by client during authorization request to
get access to a set of user attributes which are
called claims, e.g. email, profile, etc.

• The authorization decision emerges from
combining the scope Mail.Read , the user
identifier & the entity requested

Ref: https://auth0.com/blog/on-the-nature-of-oauth2-scopes/

Authorization Decision

• Scopes allow clients to request delegated access to end-
user’s Resource
e.g. Scope- Mail.Read

https://auth0.com/blog/on-the-nature-of-oauth2-scopes/

• Client website links Google Drive so that it
can display user’s Google Drive resources

• Client may have a URL like

• This URL redirects user to Google’s auth.
page & after user signs-in redirects the
authorization code to attacker.com

b) Auth code leak

https://client.com/googledrive/Login.aspx?

redirect_url=https%3A%2F%2Fattacker.com

Client.com

Client.com

Benefits of
authorization

code

The auth code provides the ability to
authenticate the client

Transmission of the access token directly
to the client without passing it through
the resource owner's user-agent

JWT (JSON
Web Tokens)

- JWTs are self-contained

- They can be signed

A JWT’s format is “1. Header . 2. Payload . 3. Signature”

1. Header contains the type of token & the hash algorithm used
on the contents of the token

2. The payload contains identity claims about a user.

Claims are statements (name or email address) about an entity
(typically, the user) and metadata

3. The signature is used by the recipient of a JWT to validate the
integrity

RFC-7636, RFC-7515, RFC-7516

